[bookmark: _GoBack]MATLAB script
Location analysis
%This is the main script, which calls all the other functions.  
%"locationAnalysis" is what needs to be put in the command window to get 
%this to run.
 
%Any variables currently stored are cleared at the start of each run of the
%analysis script
clear
 
%PARAMETERS:
initial_threshold = 30;  %This is an intensity threshold against which the
%cell membrane image is compared.  Any pixels in the image with an 
%intensity (ranging from 0-255) above this threshold are classed as 
%corresponding to the cell membrane and are used as a mask
 
filter_threshold = 30;  %This intensity threshold determines which pixels
%are classed as corresponding to the protein being analysed.
 
bulk = 0;  %This defines the amount by which the width of cell membranes in
%the cell membrane mask are increased.  Setting this to "0" will not 
%increase the width.  Changing this will increase the area around the cell 
%membranes in which proteins are classed as being colocalised with the cell
%membrane
 
plot_condition = 1;  %This determines whether the system will display
%images.  Setting this to "1" will show images and setting to "0" will
%surpress images
 
%MAIN SCRIPT:
%Asking the user to enter the root filename of the two images to be
%analysed.  This name doesn't contain the "0000.tif" part of the name.  It
%is a "string" variable type (word), so is written in single inverted
%commas
root_filename = input('Enter filename root: ', 's');
 
%Displaying the current filename (as input by the user) in the command
%window
disp(['Analysing "',root_filename, '"']);
 
%Loading the two images for analysis.  "base_im" is the image showing the
%cell membranes and "top_im" is the image showing the proteins of interest
base_im = imread(strcat([root_filename,'0001.tif']));
top_im = imread(strcat([root_filename,'0000.tif']));
 
%Displaying the cell membrane image ("base_im") if the user set
%"plot_condition" to "1"
if plot_condition == 1
    %Opening a new figure window
    figure();
    
    %Populating the new figure window with "base_im" and telling it to
    %display in grayscale (the default colourmap is a visible colour
    %spectrum)
    image(base_im), colormap(gray);
    
end
 
%Calling the main function, which generates and applies the image mask.
%This takes certain input variables (listed in brackets) and output other
%ones (in square brackets).  The variables are listed in detail at the
%beginning of the function.  The function is for analysing proteins 
%colocalised with the cell membrane
 
[cell_membrane_im filt_cell_membrane_im cell_membrane_table] = ...
    cellMembraneAnalysis(base_im, top_im, initial_threshold, bulk, ...
    filter_threshold);
 
%If the user specified "plot_condition = 1" this will execute and display a
%series of images.  In each case a new figure window is opened.
if plot_condition == 1
    %The protein image with only the cell membrane region displayed
    figure();
    image(cell_membrane_im), colormap(gray);
    
    %The protein image with only the cell membrane region displayed and
    %thresholded, so only pixels with an intensity above "filter_threshold"
    %are displayed
    figure();
    image(filt_cell_membrane_im), colormap(gray);
 
end
 
%ANALYSIS:
%Calculating the percentage of pixels in the cell membrane region, which 
%are above "filter_threshold".  
 
%"cell_membrane_table" contains all the pixels, which were determined 
%previously to lie on a cell membrane.  Measuring the number of rows in 
%this table gives the total number of pixels on the cell membrane.
cell_membrane_num_total = size(cell_membrane_table);
 
%Here, the number of pixels in the protein image, which lie on the cell
%membrane and have an intensity above "filter_threshold" are counted.
cell_membrane_num_populated = size(find(cell_membrane_table(:,4)==255));
 
%This calculates the percentage of pixels that correspond with protein
%(populated) in the total number of possible pixels (area in pixels of the
%cell membrane)
cell_membrane_percentage = (cell_membrane_num_populated(1,1)/...
    cell_membrane_num_total(1,1))*100;
 
%The percentage is displayed in the command window
disp([num2str(cell_membrane_percentage), '% of cell membrane populated']);
 
%A blank line is output to the command line to make the output look tidier
disp(' ');

Make mask
%This function takes a greyscale image and applies a pixel intensity
%threshold.  Pixels above (or equal to) this threshold are set to "255" and
%those below are set to "0".  There is also the option to increase the area
%surrounding the pixels above "255".  With this "bulking" option all the
%pixels within a square region around each pixel above the threshold is set
%to "255" regardless of their initial intensity.
 
%INPUTS:
%"input_im" is the input image, which is to be thresholded and turned into
%a mask
%"threshold" is the threshold to be applied to the input image.  It has to
%have a value between "0" and "255"
%"bulk" is a distance in pixels, which determines the area around all
%pixels with initial intensity above the threshold in which all pixels will
%be set to "255". Setting this to "0" effectively turns the feature off.
 
%OUTPUTS:
%"mask" is the modified version of "input_im", which displays all regions
%above the threshold with intensity "255" and those below with intensity
%"0"
 
function [mask] = makeMask(input_im, threshold, bulk)
 
%Initialising the array "mask".  This will be the same size as "input_im",
%so mask is initially just set to be a copy of "input_im"
mask = input_im;
 
%Applying the threshold to "input_im".  All pixels in "mask" corresponding
%to pixels in "input_im" below the threshold are set to "0"
mask(find(input_im(:,:) < threshold)) = 0;
 
%Applying the other part of the threshold.  All pixels above "threshold"
%are set to "255"
mask(find(input_im(:,:) >= threshold)) = 255;
 
%Applying the bulking feature.  This will always run, but if "bulk" is set
%to "0" the image will be unaffected.
 
%Generating a table called "mask_table", which lists the pixel locations of
%all pixels, which were initially above the threshold (i.e. have thus far
%been assigned an intensity of "255")
[mask_table(:,1), mask_table(:,2)] = find(mask == 255);
 
%Measuring the size of "mask_table".  This will tell how many rows are in
%"mask_table" and thus is used to determine how many times the bulking loop
%needs to run
size_mask_table = size(mask_table);
 
%Once for each row in "mask_table" this loop will run.  At each iteration
%the value "i" will increase by "1".  This is used to access the current
%row in "mask_table"
for i = 1:size_mask_table(1,1)
    %It will try to access some pixels outside the image when bulking,
    %which would cause the system to crash.  By using a "try" statement
    %the system will skip any attempts at assigning a new intensity to
    %a pixel where it fails.
    try
        %This section accesses a square region of "mask" around each pixel,
        %which was initially above the threshold. The square region has the
        %width (2*bulk)+1 (i.e. "bulk" either side of the current pixel and
        %the pixel itself) and the same height.
        mask((mask_table(i,1)-bulk):(mask_table(i,1)+bulk),...
            (mask_table(i,2)-bulk):(mask_table(i,2)+bulk)) = 255;
        
    end
    
end
 
%Along two edges of the image (the edges with pixel locations not equal to
%"1") "mask" will be "bulk" wider than "input_im".  This can cause problems
%when applying the mask (trying to multiple matrices of different
%dimensions is not possible), so those extra rows and columns are deleted.
 
%To know which rows and columns to remove the size of "mask" must be known.
%The number of rows and columns is set to "rows" and "cols".
[rows, cols] = size(mask);
 
%This takes the extra rows and columns and sets them to "[]", which has the
%effect of removing those rows or columns.
mask(rows-bulk+1:rows,:) = [];
mask(:,cols-bulk+1:cols) = [];

Cell membrane analysis
%This function calls the functions responsible for generating and applying
%the mask, such that only regions of the top image ("top_im") are
%accessible (all other regions being set to an intensity of "0").  The
%locations and intensities of all pixels classed as being in the cell 
%membrane are stored in "cell_membrane_table" for analysis outside of the 
%function.
 
%INPUTS:
%"base_im" is the image showing the cell membranes, which will be turned 
%into a mask for "top_im"
%"top_im" is the image showing the proteins to be analysed
%"initial_threshold" is an intensity threshold, which determines which
%regions of "base_im" will be classed as being cell membranes or membrane
%"bulk" is the pixel width added to the cell membranes to increase the area
%in which proteins are classed as being co-localised with the cell membrane
%"filter_threshold" is an intensity threshold, which distinguishes between
%proteins and the background
 
%OUTPUTS:
%"cell_membrane_im" is "top_im" with the cell membrane mask applied
%"filt_cell_membrane_im" is "top_im" with the cell membrane mask applied 
%and all pixels with intensities above "filter_threshold" set to 255 and 
%those below set to "0"
%"cell_membrane_table" is a 4 column table containing information for all
%pixels identified as being in the cell membrane.  The columns are 
%horizontal position, vertical position, intensity in "top_im" and 
%post-filter intensity
 
function [cell_membrane_im filt_cell_membrane_im cell_membrane_table] = ...
    cellMembraneAnalysis(base_im, top_im, initial_threshold, bulk, ...
    filter_threshold)
 
%This function generates the mask outlining the cell membranes.  It also
%applies any cell membrane bulking as defined by the user (in "bulk")
[cell_membrane_mask] = makeMask(base_im, initial_threshold, bulk);
 
%Applying the mask to "top_im".  The mask is set as either "0" or "255", so
%for the purpose of applying the mask all values are divided by "255"
cell_membrane_im = top_im.*(cell_membrane_mask/255);
 
%Applying the filter to "cell_membrane_im", which sets all pixels above
%"filter_threshold" to "255" and all those below it to "0".  The filtered
%image is set to "filt_cell_membrane_im".
[filt_cell_membrane_im] = makeMask(cell_membrane_im, filter_threshold, 0);
 
%Setting the first two columns of "cell_membrane_table" to the row and 
%column of each pixel in the cell membrane.  These are identified as all 
%locations in "cell_membrane_mask" with an intensity equal to 255
[cell_membrane_table(:,1), cell_membrane_table(:,2)] = ...
    find(cell_membrane_mask == 255);
 
%The number of pixels in the cell membrane is given by the size of
%"cell_membrane_table"
num_px = size(cell_membrane_table);
 
%For each pixel listed by its coordinates in "cell_membrane_table" the
%pre-filtered intensity (actual intensity in "top_im") and the
%post-filtered intensity ("0" or "255") are added to columns 3 and 4 of
%"cell_membrane_table" respectively.
for i = 1:num_px(1,1)
    cell_membrane_table(i,3) = cell_membrane_im(...
        cell_membrane_table(i,1),cell_membrane_table(i,2));
    
    cell_membrane_table(i,4) = filt_cell_membrane_im(...
        cell_membrane_table(i,1),cell_membrane_table(i,2));
    
end

